Fungal infection in Intensive Care Unit patients

14/3/2014

Presenter: Joanne Chan
Supervisor: Dr. KC Chan
Content

1. Background
2. Invasive Candidemia
 1. Epidemiology
 2. Risk factors
 3. Diagnosis
 4. Treatment
3. Invasive aspergillosis
4. Other fungal infections in immunocompromised patients require ICU support
Background

• Two basic forms
 – Yeasts
 • Unicellular, small rounded form
 • E.g. Candida, Cryptococcus, Trichosporon, Rhodotorula
 – Molds
 • Filamentous forms known as hyphae
 • E.g. Aspergillus, Penicillium
Background

• Fungal infections
 – An increasingly important infection
 – Associated with increased mortality and morbidity, longer duration of hospital stay, and increased costs

• International study (the EPIC II study)
 – demonstrated fungi accounted for 20.9% of microorganisms recovered from positive cultures from ICU patients in Western Europe [1]

• Yeasts, particularly Candida species
 – 18.5% of all microorganisms from positive culture
 – ranked fourth in the most commonly isolated microorganisms after Staphylococcus aureus, Pseudomonas spp. and Escherichia coli

Background

• Invasive Candida (IC) infections, particularly candidemia, represent the most common invasive fungal infection (IFI) in critically ill patients [1]

• In recent years, Invasive aspergillosis has gained importance in the ICU setting, although its frequency is very low compared to IC [2]

• IFIs caused by other filamentous or yeast-like fungi have rarely been encountered in ICUs unless patients are immunocompromised

Candida infection
Candida infection

• Candida albicans and other candida species
 – Harmless inhabitants of skin
 – Normal flora in the gastrointestinal and genitourinary tracts of humans
 – Normal immune system keeps candida on body surfaces
• Endogenous opportunistic infection
• A wide spectrum of conditions
 – From local overgrowth of cutaneous or mucous membrane to invasive candidiasis (invasive focal infections, disseminated, hematogenous)
Main Defense Mechanisms

- Skin and mucous membranes integrity
- Presence of normal bacterial flora
- Presence of an intact immune system

INVASIVE CANDIDIASIS
Risk factors

- Patients in ICU and those who are immunocompromised are most at risk for the development of candidemia
- Among ICU patients, risk factors include [1, 2]:
 - Central venous catheters
 - Total parenteral nutrition
 - Broad-spectrum antibiotics
 - High APACHE scores
 - Acute renal failure, particularly if requiring hemodialysis
 - Prior surgery, particularly abdominal surgery
 - Gastrointestinal tract perforations and anastomotic leaks

Invasive candidiasis - Epidemiology

- Candida albicans
 - the most common cause of candidemia
- In a multicenter surveillance study in the United States between 2004 and 2008, in 2019 bloodstream isolates [1]

Epidemiology

- Distribution – influenced by age, study designs, geographical locations
- C. glabrata
 - Ranked 2nd in north America
 - More common in the aged
- C. parapsilosis
 - Ranked 2nd in European candidemia surveys
 - the second most common species isolated from the pediatric population [1]
 - More related to CVC line infection

Epidemiology

• In another prospective multicenter study of 300 ICU patients in France with proven invasive candidiasis [1]
 – C. albicans 57%,
 – C. glabrata 17%,
 – C. parapsilosis 8%
 – C. krusei 5%
 – C. tropicalis 5%

• The case fatality ratio 45.9%

Diagnosis

• Gram stain and blood culture isolation
 – Gold standard for diagnosis
 – Relatively insensitive
 • positive in only approximately 50 percent of patients who were found to have disseminated candidiasis at autopsy [1,2]
 – At least days are required for growth and identification of the organism

Diagnosis

• Other definitive diagnostic methods
 – Positive culture of other body fluid e.g. CSF or peritoneal fluid
 – Directed biopsy of organ involved
Diagnosis

• Beta-D-glucan antigen (BG)
 – A cell wall component of many fungi
 – In one multicenter study in US [1]
 • At a cutoff of 60 pg/mL, sensitivity 69.9% and specificity 87.1%
 • At a cutoff of 80 pg/mL, the sensitivity 64.4% and specificity 92.4%
 – Could be of low level in cryptococcosis and zygomycosis [2]
 – False positive
 • Hemodialysis with cellulose membranes, those treated with immunoglobulin, albumin or blood products filtered through cellulose depth filters which contain BG
 • Serosal exposure to glucan-containing gauze
 • Bacteremia, hemolysed sample, glucan contaminated sample

Diagnosis

• Polymerase chain reaction (PCR)
 – Can identify Candida to the species level
 – to date, there is no commercially available approved PCR test to detect Candida species
Treatment: Antifungal agents

• Three main classes
 – Azoles
 – Echinocandins
 – Polyenes
Azole

• E.g. Fluconazole, Voriconazole, Itraconazole
• Inhibits the cytochrome P450-dependent enzyme lanosterol 14-alpha-demethylase
Azole

• **Fluconazole**
 - **Coverage**
 • General good coverage for candida species
 • except some C. glabrata isolates and all C. krusei
 - **Administration**
 • Available in intravenous and oral formulations (highly bioavailable)
 • Recommended dose for candidiasis, 800mg loading then 400mg daily
 - **Metabolism and excretion**
 • partly by liver, excreted through urine, renal adjustment needed
 - **Side effect**
 • Liver derrangement
 • Inhibited hepatic CYP2C9 (potent); CYP3A4 (moderate)
 • Cases of QTc prolongation and torsade de pointes have been reported
Azole

• Voriconazole
 – Activity against candida is superior to fluconazole
 – Greater in vitro activity against C. Krusei isolates
 – Yet, cross- resistance between fluconazole and voriconazole is frequent especially with C. glabrata
Echinocandins

• Noncompetitive inhibitors of the synthesis of 1,3-beta-D-glucan
 – an integral component of the fungal cell wall
Echinocandins

• Efficacy in non neutropenic patients with IC
 – as effective as and better tolerated than amphotericin B [1]
 – more effective than fluconazole [2]
• Preferred over azoles if C. glabrata or C. krusei is identified or suspected [3]
• Yet the MIC for C. parapsilosis with all the echinocandins are higher than for other Candida species
 – Clinical implication unclear

Echinocandins

– Less drug-drug interaction
 • Not primarily metabolized by cytochrome P450, nor are they substrates or inhibitors of P-glycoprotein pumps

– Anidulafungin, Micafungin, Caspofungin
 • Share similar spectrum of activity and mechanism of action
 • Only available in intravenous formulations
 • non-dialyzable, minimally excreted via urinary tract, no renal dosing adjustment needed
Echinocandins

- Caspofungin
 - Dose adjustment for severe hepatic insufficiency
- Micafungin
 - Also partially metabolised hepatically, elimination pharmacokinetics in advanced hepatic insufficiency are not well defined
- Anidulafungin:
 - No dose adjustment for hepatic insufficiency
Polyenes

- Binds to ergosterol altering cell membrane permeability and causing leakage of cell components with subsequent cell death
Polyenes

• Amphotericin B
 – rapidly cidal in vitro activity against most species of Candida
 – Side effects
 • Significant nephrotoxicity
 • Anaphylaxis, infusion reaction, thrombopheblitis
 • Electrolyte disturbance e.g. hypoK, hypoMg
 – New development of various lipid-based derivatives e.g. liposomal amphotericin B
 • improved side effect profile
General patterns of susceptibility of commonest Candida species

<table>
<thead>
<tr>
<th>Species</th>
<th>Fluconazole</th>
<th>Voriconazole</th>
<th>Echinocandins</th>
<th>Amphotericin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>S-DD to R</td>
<td>S to R</td>
<td>S</td>
<td>S to I</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>S</td>
<td>S</td>
<td>S-DD to R</td>
<td>S</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S to I</td>
</tr>
</tbody>
</table>

S: susceptible, R: resistant, I: intermediately susceptible
S-DD: susceptible dose-dependent
Treatment

• Fluconazole: usually the first line prophylactic or empirical antifungal agent
• Increased isolation of non-albicans species of candida namely C. glabrata, C. parasilosis, C. tropicalis and C. krusei.
• Some C. glabrata isolates: resistant to fluconazole
• All C. Krusei isolates: resistance to fluconazole
Invasive Aspergillosis (IA)
Aspergillosis

- Aspergillus species
 - Ubiquitous in nature, living in soil and on plants
 - They have small conidia forming aerosols, inhalation of which is frequent
• Aspergillosis
 – Illness due to allergy, airway or lung invasion, cutaneous infection, or extrapulmonary dissemination caused by species of Aspergillus

• Main defense mechanism
 – phagocytosis specifically in airway epithelial cells and alveolar macrophages

• Tissue invasion
 – uncommon
 – occurs most frequently in immunosuppression associated with therapy for hematologic malignancies, hematopoietic cell transplantation, or solid organ transplantation
Aspergillosis

• In recent years, IA has become more important in critically ill patients

• Predisposing conditions in ICU patients for developing IA includes [1,2]
 – chronic obstructive pulmonary disease (COPD)
 – Prolong High dose corticosteroid use
 – Severe hepatic failure

• Crude mortality rate for IA is higher (97% among patients with proven IA in one survey) [1]

Diagnosis of aspergillosis

• Often referred to within a scale of certainty
 – possible, probable, or proven

• Proven
 – Demonstration of hyphal elements invading tissues (from biopsy of any affected site, such as the lung or skin)
 – Culture from a normally sterile site
• Possible or probable diagnosis of IA and decision on treatment depends on
 – Isolating the organism (or markers of the organism most commonly galactomannan)
 – AND the probability that it is the cause of disease
Diagnosis of aspergillosis: Culture

• Culture
 – both microscopic examination and culture are insensitive

• In multicenter surveillance studies
 – only 25 to 50 percent of hematopoietic cell transplant recipients who met criteria for invasive aspergillosis based upon galactomannan antigen results had positive cultures [1,2]

Galactomannan antigen detection

• Galactomannan
 – a polysaccharide that is a major constituent of Aspergillus cell walls

• The galactomannan antigen assay
 – Approved by FDA for serum and BAL fluid
 – An optical density index of ≥ 0.5 regards as positive, for both serum and BAL fluid
Galactomannan antigen detection

• A meta-analysis included 27 studies with a total of 4000 patients, for serum specimen: [1]
 – the sensitivity and specificity: 61% and 93% respectively

• Another retrospective study, for BAL fluid:[2]
 – the sensitivity and specificity: 61% and 93% respectively (with an OD index threshold ≥0.5)

Treatment of IA

• Azoles – Voriconazole
• Polyenes – Amphotericin B
• Echinocandins – limited role in initial treatment
Treatment of IA

- For established diagnosis of invasive aspergillosis
 - Voriconazole
 - Amphotericin B (lipid formulation) if intolerant to voriconazole

- For suspected invasive mold infection
 - Started with lipid formulation of amphotericin B (to cover possible mucormycosis)
 - Once diagnosis of aspergillosis is established -> switch back to voriconazole

- For those intolerance or resistant to standard treatment
 - Caspofungin, approved by FDA, often in combination with another antifungal agent if it is used for salvage therapy
Other fungal infections in ICU

- Invasive fungal infections caused by other filamentous or yeast-like fungi have rarely been encountered in ICUs
- In Immunocompromised in need ICU support
 - Cryptococciosis, Fusariosis, zygomycosis, mucormycosis and Trichosporon spp. should be considered
The End